vi Editor Reference

This reference was originally developed by Maarten Litmaath <maart@cs.vu.nl>, and
has been contributed to by many others (see list at the end of document).

Warning: some vi versions don't support the more esoteric features described in this

document.

default values
AX

[*]

<*>
<sp>
<cr>
<1f>
<ht>
<esc>
<erase>
<kill>
<intr>
<a-z>

N

CHAR
WORD

Move Commands

N | Command

* | h | AH | <erase>
* | j | <lf> | ™N
* | 1| <sp>
* | k| AP
*|$
_|A
~k|_
*|_
* | + | <cr>
_|0
|
* | f<char>
* | t<char>
* | F<char>
* | T<char>
* | :
* | ,
*|W
*|W
*|b
*|B
*|e
*|E
*|G
*|H
*||_

|
_||V|
*|)
*|(
*
*|{
-1

1

1 <ctrl>x

“*' is optional
“*' must not be taken literally

. space
: carriage return

: linefeed

: horizontal tab

. escape

: your erase character

: your kill character

: your interrupt character

: an element in the range

: number (°*' = allowed, “-' = not

appropriate)

: char unequal to <ht>|<sp>
: word followed by <ht>|<sp>|<lf>

Meaning

<*> chars to the left.

<*> lines downward.

<*> chars to the right.

<*> lines upward.

To the end of 1line <*> from the cursor.

To the first CHAR of the line.

To the first CHAR <*> - 1 1lines lower.

To the first CHAR <*> lines higher.

To the first CHAR <*> lines lower.

To the first char of the line.

To column <*> (<ht>: only to the endpoint).

<*> <char>s to the right (find).

Till before <*> <char>s to the right.

<*> <char>s to the left.

Till after <*> <char>s to the left.

Repeat latest ~“f'|"t'|'F'|'T' <*> times.

Idem in opposite direction.

<*> words forward.

<*> WORDS forward.

<*> words backward.

<*> WORDS backward.

To the end of word <*> forward.

To the end of WORD <*> forward.

Go to line <*> (default EOF).

To line <*> from top of the screen (home).

To line <*> from bottom of the screen
(last).

To the middle line of the screen.

<*> sentences forward.

<*> sentences backward.

<*> paragraphs forward.

<*> paragraphs backward.

To the next section (default EOF).

L

‘<a-z>
'<a-z>

/<string>
?<string>
n
N
%

Searching (See Above)

:ta <name>

M

:[x,ylg/<string>/<cmd>

:[x,ylv/<string>/<cmd>

Undoing Changes

u
u

:q!
rel

To the
file).

To the mark.

To the first CHAR of the line with the mark.

To the cursor position before the latest
absolute jump (of which are examples /'
and "G').

To the first CHAR of the line on which the
cursor was placed before the latest
absolute jump.

To the next occurrence of <string>.

To the previous occurrence of <string>.

Repeat latest “/'| ?' (next).

Idem in opposite direction.

Find the next bracket and go to its match

(also with “{'|"}" and "['|'1").

previous section (default begin of

Search in the tags file where <name>
is defined (file, line), and go to it.
Use the name under the cursor in a ":ta'

command.

Search globally [from line x to y] for
<string> and execute the ‘ex' <cmd> on
each occurrence.

Execute <cmd> on the lines that don't
match.

Undo the latest change.

Undo all changes on a 1line, while not

having moved off it (unfortunately).
Quit vi without writing.
Re-edit a messed-up file.

Appending Text (end with <esc>)

* | a

* | A

* | l

* | I

* | o)

* |0

* | ><move>
ol o>>

* | ["<a-z1-9>]p

* | ["<a-z1-9>]P

<*> times after the cursor.
<*> times at the end of line.
<*> times before the cursor (insert).
<*> times before the first CHAR of the line
On a new line below the current (open).
| The count is only useful on a slow terminal.
On a new line above the current.
| The count is only useful on a slow terminal.
Shift the 1lines described by <*><move> one
| shiftwidth to the right (layout!).
Shift <*> lines one shiftwidth to the right.
Put the contents of the (default undo)
| buffer <*> times after the cursor.
| A buffer containing lines 1is put only once,
| below the current line.
Put the contents of the (default undo) buffer
| <*> times before the cursor.
| A buffer containing lines is
| above the current line.
Repeat previous command <*> times.
| If the last command before a ".'
| references a numbered buffer, the buffer number
| is incremented first (and the count is ignored):
I

put only once,

command

| "lpu.u.u.u.u - ‘walk through' buffers 1

| through 5
"P... . - restore them
I

Deleting Text

Everything deleted can be stored into a buffer. This is achieved by putting a ™" and a
letter <a-z> before the delete command. The deleted text will be in the buffer with
the used letter. If <A-Z> is used as buffer name, the adjugate buffer <a-z> will be
augmented instead of overwritten with the text. The undo buffer always contains the
latest change. Buffers <1-9> contain the latest 9 LINE deletions (""1' is most recent).

*] x | Delete <*> chars under and after the cursor.

*] X | <*> chars before the cursor.

* | d<move> | From begin to endpoint of <*><move>.

* | dd | <*> lines.

- | D | The rest of the line.

* | <<move> | Shift the lines described by <*><move> one
| shiftwidth to the left (layout!).

*] << | Shift <*> lines one shiftwidth to the left.

. | Repeat latest command <*> times.

Changing Text (end with <esc>)

* | r<char> | Replace <*> chars by <char> - no <esc>.
R | Overwrite the rest of the line,
| appending change <*> - 1 times.

*

* | s | Substitute <*> chars.

* S | <*> lines.

* | c<move> | Change from begin to endpoint of <*><move>.

* | cc | <*> lines.

* 1 C | The rest of the line and <*> - 1 next lines.

* | =<move> | If the option “lisp' is set, this command
| will realign the lines described by <*><move>
| as though they had been typed with the option
| Tai' set too.

-]~ | Switch lower and upper cases.

* 1 J | Join <*> lines (default 2).

. | Repeat latest command <*> times (°J' only
| once).

-] & | Repeat latest “ex' substitute command, e.g.
| *:s/wrong/good’.

- | :[x,yls/<p>/<r>/<f>| Substitute (on lines x through y) the pattern

| <p> (default the last pattern) with <r>.

| Useful flags <f> are “g' for “global’
| (i.e. change every non-overlapping occurrence
| of <p>) and “c' for ‘confirm' (type ‘y' to
| confirm a particular substitution, else
|
I

<cr>). Instead of /' any punctuation
CHAR unequal to <1f> can be used as
delimiter.

Substitute Replacement Patterns

The basic meta-characters for the replacement pattern are “& and "~'; these are
given as *' and "~' when nomagic is set. Each instance of '&' is replaced by the
characters which the regular expression matched. The meta-character “~' stands, in
the replacement pattern, for the defining text of the previous replacement pattern.
Other meta-sequences possible in the replacement pattern are always introduced by
the escaping character ™. The sequence "0 (with "n"in [1-9]) is replaced by the text
matched by the n-th regular subexpression enclosed between " and). The
sequences " 8'and " in the replacement to be converted to upper- or lower-case
respectively if this character is a letter. The sequences "U' and " or "\' is encountered,
or until the end of the replacement pattern.

Remembering Text (yanking)

With yank commands you can put ""<a-z>' before the command, just as with delete
commands. Otherwise you only copy to the undo buffer. The use of buffers <a-z> is
THE way of copying text to another file; see the e <file>' command.

* | y<move>
| yy

| Y

- | m<a-z>

* ¥

Yank from begin to endpoint of <*><move>.
<*> lines.

Idem (should be equivalent to ‘y$' though).
Mark the cursor position with a letter.

Commands While in Append|Change Mode

@

AV

AD
07D

AND
AT

AH | <erase>
AW

<kill>

<intr>

If typed as the first character of the
insertion, it is replaced with the previous
text inserted (max. 128 chars), after which
the insertion is terminated.

Deprive the next char of its special meaning
(e.g. <esc>).

One shiftwidth to the left.

Remove all indentation on the current line
(there must be no other chars on the line).
Idem, but it is restored on the next line.
one shiftwidth to the right
One char back.

One word back.

Back to the begin of the change on the
current line.

like <esc>.

Writing, Editing Other Files, and Quitting vi

In ;' “ex' commands %' denotes the current file, “#' is a synonym for the alternate
file (which normally is the previous file). Marks can be used for line numbers too:
'<a-z>. In the ":w'[":f':cd’| ;€' :n' commands shell meta-characters can be used.

°q

:q!

NZ

W

‘W <name>

‘W >> <pame>
:w! <name>
IX,y W <name>
Twq

zZ

:x [<file>]
x! [<file>]
ipre

:f <name>
ccd [<dir>]
ccd! [<dir>]

ce [+<cmd>] <file>

re! [+<cmd>] <file>
AN

Quit vi, unless the buffer has been changed.

Quit vi without writing.

Suspend vi.

Write the file.

Write to the file <name>.

Append the buffer to the file <name>.

Overwrite the file <name>.

Write lines x through y to the file <name>.

Write the file and quit vi; some versions quit
even if the write was unsuccessful!

Use 'ZZ' instead.

Write if the buffer has been changed, and
quit vi. If you have invoked vi with the “-r'
option, you'd better write the file
explicitly (‘w' or “w!'), or quit the
editor explicitly ('q!') if you don't want
to overwrite the file - some versions of vi
don't handle the ‘recover' option very well.

Same as ZZ [but write to <file>].
iwl[<file>]"' and “:q'.

Preserve the file - the buffer is saved as if
the system had just crashed; for emergencies,
when a “:w' command has failed and you don't
know how to save your work (see ‘vi -r').

Set the current filename to <name>.

Set the working directory to <dir>
(default home directory).

Idem, but don't save changes.

Edit another file without quitting vi - the
buffers are not changed (except the undo
buffer), so text can be copied from one file to
another this way. [Execute the “ex' command
<cmd> (default “$') when the new file has been
read into the buffer.] <cmd> must contain no
<sp> or <ht>. See ‘vi startup'.

Idem, without writing the current buffer.
Edit the alternate (normally the previous)
file.

‘rew
crew!
:n [+<cmd>] [<files>]
:n! [+<cmd>] [<files>]
:args

Display Commands
AG

AL
AR

[*1NE
[*1ny

[*17D

[*1~U

[*1AF
[*1~B

Rewind the argument list, edit the first file.
Idem, without writing the current buffer.

Edit next file or specify a new argument list.
Idem, without writing the current buffer.

Give the argument list, with the current file
between “[' and “]'.

Give file name, status, current line number
and relative position.
Refresh the screen (sometimes “AP' or “AR').
Sometimes vi replaces a deleted line by a "@',
to be deleted by "AR' (see option ‘redraw').
Expose <*> more lines at bottom, cursor
stays put (if possible).
Expose <*> more lines at top, cursor
stays put (if possible).
Scroll <*> lines downward
(default the number of the previous scroll;
initialization: half a page).
Scroll <*> lines upward
(default the number of the previous scroll;
initialization: half a page).
<*> pages forward.
<*> pages backward (in older versions ‘AB' only
works without count).

If in the next commands the field <wi> is present, the windowsize will change to
<wi>. The window will always be displayed at the bottom of the screen.

[*]z[wi]l<cr>
[*]z[wil+
[*1z[wi]-

[*]z[wi].

Mapping and Abbreviation

Put line <*> at the top of the window
(default the current line).

Put line <*> at the top of the window
(default the first line of the next page).

Put line <*> at the bottom of the window
(default the current line).

Put line <*> in the centre of the window
(default the current line).

When mapping take a look at the options “to' and ‘remap' (below).

:map <string> <seq>

:map

:unmap <string>

:map! <string> <seq>

:map!
runmap! <string>
:ab <string> <seqg>

<string> is interpreted as <seqg>, e.g.
“:map AC :lcc %"V<cr>' to compile from
within vi (vi replaces %' with the current
file name).

Show all mappings.

Deprive <string> of 1its mapping. When
vi complains about non-mapped macros
(whereas no typos have been made), first
do something like “:map <string> Z',
followed by ":unmap <string>'

('Z' must not be a macro itself), or
switch to “ex' mode first with "Q'.

Mapping in append mode, e.g.

“:map! 8 b 8ginAV<cr>end;AV<esc>0<ht>"'.
When <string> is preceded by “AV', no
mapping is done.

Show all append mode mappings.

Deprive <string> of its mapping (see “:unmap').

Whenever in append mode <string> is preceded
and followed by a breakpoint (e.g. <sp>
or °,"), it is interpreted as <seg>,

e.g. ':ab p procedure'.
A "AV' immediately following <string> inhibits
expansion.

:ab
:unab <string>

@<a-z>

@@

Switch and Shell Commands
Q | M| <intr><intr>
ivi

:sh
:[x,y]!<cmd>

[x,yl!! [<args>]
:[x,yll<cmd> ! [<args>]

[*]!<move><cmd>

[*]!<move>!<args>
[*]!!<cmd>

[*1!!! [<args>]
X,y w !<cmd>

:r!<cmd>
Ir <name>

vi Startup

vi [<files>] |

Show all abbreviations.
Do not consider <string> an abbreviation
anymore (see ‘:unmap').
Consider the contents of the named register a
command, e.g.:
00AD:s/wrong/good/<esc>"zdd
Explanation:
o open a new line
0AD - remove indentation

:s/wrong/good/ - this 1input text is an
‘ex' substitute command

<esc> - finish the input

"zdd - delete the line just

created into register °z
Now you can type '@z' to substitute ‘wrong'
with “good' on the current line.
Repeat last register command.

Switch from vi to “ex'.

An “ex' command can be given.

Switch from “ex' to vi.

Execute a subshell, back to vi by "AD'.

Execute a shell <cmd> [on 1lines x through y;
these lines will serve as input for <cmd> and
will be replaced by its standard output].

Repeat last shell command [and append <args>].

Use the previous command (the second “!') in a

new command.

The shell executes <cmd>, with as standard
input the lines described by <*><move>,
next the standard output replaces those lines
(think of “cb', ‘sort', ‘nroff', etc.).

Append <args> to the last <cmd> and execute it,
using the lines described by the current
<*><move>.

Give <*> lines as standard input to the
shell <cmd>, next let the standard output

replace those lines.

Use the previous <cmd> [and append
<args> to it].

Let lines x to y be standard input for <cmd>
(notice the <sp> between “w' and “!'").

Put the output of <cmd> onto a new line.

Read the file <name> into the buffer.

Edit the files, start with the first page of
the first file.

The editor can be initialized by the shell variable "EXINIT', which looks like:

EXINIT="'<cmd>|<cmd>|..."

<cmd>: set options

map ...
ab ...

export EXINIT (in the Bourne shell)

However, the list of initializations can also be put into a file. If this file is located in

your home directory, and is named ".exrc' AND the variable "EXINIT" is NOT set, the
list will be executed automatically at startup time. However, vi will always execute

the contents of a ".exrc' in the current directory, if you own the file. Else you have to
give the execute command yourself:

:source file

or
:so file

On-line initializations can be given with “vi +<cmd> file', e.g.:

vi +x file | The cursor will immediately jump to line x
| (default last line).
vi +/<string> file | ~ to the first occurrence of <string>.

You can start at a particular tag with:

vi -t <tag> | Start in the right file in the right place.

Sometimes (e.qg. if the system crashed while you were editing) it is possible to
recover files lost in the editor by “vi -r file'. If you just want to view a file by using vi,
and you want to avoid any change, instead of vi you can use the “view' or "vi-R'
command: the option ‘readonly' will be set automatically (with “:w!" you can override
this option).
The Most Important Options
ai autoindent - In append mode after a <cr> the

cursor will move directly below the first

CHAR on the previous line. However, if the
option “lisp' is set, the cursor will align
at the first argument to the last open list.
autowrite - Write at every shell escape.
(useful when compiling from within vi)
directory - The directory for vi to make
temporary files (default “/tmp').

aw

dir=<string>

para=<string> paragraphs - Every pair of chars in <string>
is considered a paragraph delimiter

nroff macro (for “{' and “}'). A <sp>
preceded by a "' indicates the previous char
is a single letter macro. “:set para=P bp'
introduces “.P' and ".bp' as paragraph
delimiters. Empty lines and section
boundaries are paragraph boundaries too.

I
I
I
I
I
I
I
I
I
eb | errorbells - Beeps when you goof
| (not on every terminal).
ic | ignorecase - No distinction between upper and
| lower cases when searching.
lisp | Redefine the following commands:
[GRS - move backward (forward) over
| S-expressions
| L, - idem, but don't stop at atoms
| “[[', “11' - go to previous (next) line
| beginning with a “('
| See option ‘ai'.
list | <1f> is shown as “$', <ht> as "AI'.
magic | If this option is set (default), the chars ".°',
| °“['" and **' have special meanings within
| search and “ex' substitute commands. To
| deprive such a char of its special function
| it must be preceded by a “'. If the option
| is turned off it's just the other way around.
| Meta-chars:
| A<string> - <string> must begin the line
| <string>$ - <string> must end the line
| . - matches any char
| [a-z] - matches any char in the range
| [<string>] - matches any char in <string>
| [A<string>] - matches any char not in <string>
| <char>* - 0 or more <char>s
| <<string>> - <string> must be a word
nu | number - Numbers before the lines.
I
I
I
I
I
I
I
I

redraw
remap

The screen remains up to date.
If on (default), macros are repeatedly
expanded until they are unchanged.
Example: if “o' is mapped to ‘A', and A’
is mapped to 'I', then "o' will map to °"I'
if “remap' is set, else it will map to “A'.
Vi reports whenever e.g. a delete
or yank command affects <*> or more lines.
readonly - The file is not to be changed.
However, “:w!' will override this option.
sections - Gives the section delimiters
(for “[[' and “11'); see option “para'.
A “{' beginning a line also starts a section
(as in C functions).
shell - The program to be used for shell
escapes (default “$SHELL'
(default “/bin/sh')).

report=<*>
ro

sect=<string>

sh=<string>

SW=<*> shiftwidth - Gives the shiftwidth (default 8
positions).

sm showmatch - Whenever you append a “)', vi shows
its match if it's on the same page; also with
“{' and “}'. If there's no match, vi will beep.

terse Short error messages.

to timeout - If this option is set, append mode
mappings will be interpreted only if they're
typed fast enough.

ts=<*> tabstop - The length of a <ht>; warning: this is
only IN the editor, outside of it <ht>s have
their normal length (default 8 positions).

wa writeany - No checks when writing (dangerous).

warn Warn you when you try to quit without writing.

wi=<*> window - The default number of lines vi shows.

wm=<*> wrapmargin - In append mode vi automatically
puts a <1f> whenever there is a <sp> or <ht>
within <wm> columns from the right margin.

ws wrapscan - When searching, the end is

considered “stuck' to the begin of the file.

:set <option>
:set no<option>
:set <option>=<value>

Turn <option> on.
Turn <option> off.
Set <option> to <value>.

:set Show all non-default options and their values.
:set <option>? Show <option>'s value.
:set all Show all options and their values.

Contributors to this Reference

Maarten Litmaath <maart@cs.vu.nl>

Rich Salz <rsalz@bbn.com>

Eamonn McManus <emcmanus@cs.tcd.ie>

Diomidis Spinellis <diomidis%ecrcvax.uucp@pyramid.pyramid.com>
Blair P. Houghton <bph@buengc.bu.edu>

Rusty Haddock <{uunet,att,rutgers}!mimsy.umd.edu!fe203!rusty>
Panos Tsirigotis <panos@boulder.colorado.edu>

David J. MacKenzie <djm@wam.umd.edu>

Kevin Carothers <kevin@ttidca.tti.com>

Dan Mercer <mercer@ncrcce.StPaul. NCR.COM>

You can edit/redistribute this document freely, as long as you don't make false
claims on original authorship.

