
vi Editor Reference
This reference was originally developed by Maarten Litmaath <maart@cs.vu.nl>, and
has been contributed to by many others (see list at the end of document).

Warning: some vi versions don't support the more esoteric features described in this
document.

 default values : 1
 ^X : <ctrl>x
 [*] : `*' is optional
 <*> : `*' must not be taken literally
 <sp> : space
 <cr> : carriage return
 <lf> : linefeed
 <ht> : horizontal tab
 <esc> : escape
 <erase> : your erase character
 <kill> : your kill character
 <intr> : your interrupt character
 <a-z> : an element in the range
 N : number (`*' = allowed, `-' = not
 appropriate)
 CHAR : char unequal to <ht>|<sp>
 WORD : word followed by <ht>|<sp>|<lf>

Move Commands

 N | Command | Meaning
 ---+-------
 -------------+---
 * | h | ^H | <erase> | <*> chars to the left.
 * | j | <lf> | ^N | <*> lines downward.
 * | l | <sp> | <*> chars to the right.
 * | k | ^P | <*> lines upward.
 * | $ | To the end of line <*> from the cursor.
 - | ^ | To the first CHAR of the line.
 * | _ | To the first CHAR <*> - 1 lines lower.
 * | - | To the first CHAR <*> lines higher.
 * | + | <cr> | To the first CHAR <*> lines lower.
 - | 0 | To the first char of the line.
 * | | | To column <*> (<ht>: only to the endpoint).
 * | f<char> | <*> <char>s to the right (find).
 * | t<char> | Till before <*> <char>s to the right.
 * | F<char> | <*> <char>s to the left.
 * | T<char> | Till after <*> <char>s to the left.
 * | ; | Repeat latest `f'|`t'|`F'|`T' <*> times.
 * | , | Idem in opposite direction.
 * | w | <*> words forward.
 * | W | <*> WORDS forward.
 * | b | <*> words backward.
 * | B | <*> WORDS backward.
 * | e | To the end of word <*> forward.
 * | E | To the end of WORD <*> forward.
 * | G | Go to line <*> (default EOF).
 * | H | To line <*> from top of the screen (home).
 * | L | To line <*> from bottom of the screen
 | | (last).
 - | M | To the middle line of the screen.
 * |) | <*> sentences forward.
 * | (| <*> sentences backward.
 * | } | <*> paragraphs forward.
 * | { | <*> paragraphs backward.
 - |]] | To the next section (default EOF).

 - | [[| To the previous section (default begin of
 | | file).
 - | `<a-z> | To the mark.
 - | '<a-z> | To the first CHAR of the line with the mark.
 - | `` | To the cursor position before the latest
 | | absolute jump (of which are examples `/'
 | | and `G').
 - | '' | To the first CHAR of the line on which the
 | | cursor was placed before the latest
 | | absolute jump.
 - | /<string> | To the next occurrence of <string>.
 - | ?<string> | To the previous occurrence of <string>.
 - | n | Repeat latest `/'|`?' (next).
 - | N | Idem in opposite direction.
 - | % | Find the next bracket and go to its match
 | (also with `{'|`}' and `['|`]').

Searching (See Above)

 :ta <name> | Search in the tags file where <name>
 | is defined (file, line), and go to it.
 ^] | Use the name under the cursor in a `:ta'
 | command.
 :[x,y]g/<string>/<cmd> | Search globally [from line x to y] for
 | <string> and execute the `ex' <cmd> on
 | each occurrence.
 :[x,y]v/<string>/<cmd> | Execute <cmd> on the lines that don't
 | match.

Undoing Changes

 u | Undo the latest change.
 U | Undo all changes on a line, while not
 | having moved off it (unfortunately).
 :q! | Quit vi without writing.
 :e! | Re-edit a messed-up file.

Appending Text (end with <esc>)

 * | a | <*> times after the cursor.
 * | A | <*> times at the end of line.
 * | i | <*> times before the cursor (insert).
 * | I | <*> times before the first CHAR of the line
 * | o | On a new line below the current (open).
 | The count is only useful on a slow terminal.
 * | O | On a new line above the current.
 | The count is only useful on a slow terminal.
 * | ><move> | Shift the lines described by <*><move> one
 | shiftwidth to the right (layout!).
 * | >> | Shift <*> lines one shiftwidth to the right.
 * | ["<a-z1-9>]p | Put the contents of the (default undo)
 | buffer <*> times after the cursor.
 | A buffer containing lines is put only once,
 | below the current line.
 * | ["<a-z1-9>]P | Put the contents of the (default undo) buffer
 | <*> times before the cursor.
 | A buffer containing lines is put only once,
 | above the current line.
 * | . | Repeat previous command <*> times.
 | If the last command before a `.' command
 | references a numbered buffer, the buffer number
 | is incremented first (and the count is ignored):
 |

 | "1pu.u.u.u.u - `walk through' buffers 1
 | through 5
 | "1P.... - restore them

Deleting Text
Everything deleted can be stored into a buffer. This is achieved by putting a `"' and a
letter <a-z> before the delete command. The deleted text will be in the buffer with
the used letter. If <A-Z> is used as buffer name, the adjugate buffer <a-z> will be
augmented instead of overwritten with the text. The undo buffer always contains the
latest change. Buffers <1-9> contain the latest 9 LINE deletions (`"1' is most recent).

 * | x | Delete <*> chars under and after the cursor.
 * | X | <*> chars before the cursor.
 * | d<move> | From begin to endpoint of <*><move>.
 * | dd | <*> lines.
 - | D | The rest of the line.
 * | <<move> | Shift the lines described by <*><move> one
 | shiftwidth to the left (layout!).
 * | << | Shift <*> lines one shiftwidth to the left.
 * | . | Repeat latest command <*> times.

Changing Text (end with <esc>)

 * | r<char> | Replace <*> chars by <char> - no <esc>.
 * | R | Overwrite the rest of the line,
 | appending change <*> - 1 times.
 * | s | Substitute <*> chars.
 * | S | <*> lines.
 * | c<move> | Change from begin to endpoint of <*><move>.
 * | cc | <*> lines.
 * | C | The rest of the line and <*> - 1 next lines.
 * | =<move> | If the option `lisp' is set, this command
 | will realign the lines described by <*><move>
 | as though they had been typed with the option
 | `ai' set too.
 - | ~ | Switch lower and upper cases.
 * | J | Join <*> lines (default 2).
 * | . | Repeat latest command <*> times (`J' only
 | once).
 - | & | Repeat latest `ex' substitute command, e.g.
 | `:s/wrong/good'.
 - | :[x,y]s/<p>/<r>/<f>| Substitute (on lines x through y) the pattern
 | <p> (default the last pattern) with <r>.
 | Useful flags <f> are `g' for `global'
 | (i.e. change every non-overlapping occurrence
 | of <p>) and `c' for `confirm' (type `y' to
 | confirm a particular substitution, else
 | <cr>). Instead of `/' any punctuation
 | CHAR unequal to <lf> can be used as
 | delimiter.

Substitute Replacement Patterns
The basic meta-characters for the replacement pattern are `&' and `~'; these are
given as `' and `~' when nomagic is set. Each instance of `&' is replaced by the
characters which the regular expression matched. The meta-character `~' stands, in
the replacement pattern, for the defining text of the previous replacement pattern.
Other meta-sequences possible in the replacement pattern are always introduced by
the escaping character `'. The sequence `0 (with `n' in [1-9]) is replaced by the text
matched by the n-th regular subexpression enclosed between ` and `)'. The
sequences ` 8' and ` in the replacement to be converted to upper- or lower-case
respectively if this character is a letter. The sequences `U' and ` or `\' is encountered,
or until the end of the replacement pattern.

Remembering Text (yanking)
With yank commands you can put `"<a-z>' before the command, just as with delete
commands. Otherwise you only copy to the undo buffer. The use of buffers <a-z> is
THE way of copying text to another file; see the `:e <file>' command.

 * | y<move> | Yank from begin to endpoint of <*><move>.
 * | yy | <*> lines.
 * | Y | Idem (should be equivalent to `y$' though).
 - | m<a-z> | Mark the cursor position with a letter.

Commands While in Append|Change Mode

 ^@ | If typed as the first character of the
 | insertion, it is replaced with the previous
 | text inserted (max. 128 chars), after which
 | the insertion is terminated.
 ^V | Deprive the next char of its special meaning
 | (e.g. <esc>).
 ^D | One shiftwidth to the left.
 0^D | Remove all indentation on the current line
 | (there must be no other chars on the line).
 ^^D | Idem, but it is restored on the next line.
 ^T | one shiftwidth to the right
 ^H | <erase> | One char back.
 ^W | One word back.
 <kill> | Back to the begin of the change on the
 | current line.
 <intr> | like <esc>.

Writing, Editing Other Files, and Quitting vi
In `:' `ex' commands `%' denotes the current file, `#' is a synonym for the alternate
file (which normally is the previous file). Marks can be used for line numbers too:
'<a-z>. In the `:w'|`:f'|`:cd'|`:e'|`:n' commands shell meta-characters can be used.

 :q | Quit vi, unless the buffer has been changed.
 :q! | Quit vi without writing.
 ^Z | Suspend vi.
 :w | Write the file.
 :w <name> | Write to the file <name>.
 :w >> <name> | Append the buffer to the file <name>.
 :w! <name> | Overwrite the file <name>.
 :x,y w <name> | Write lines x through y to the file <name>.
 :wq | Write the file and quit vi; some versions quit
 | even if the write was unsuccessful!
 | Use `ZZ' instead.
 ZZ | Write if the buffer has been changed, and
 | quit vi. If you have invoked vi with the `-r'
 | option, you'd better write the file
 | explicitly (`w' or `w!'), or quit the
 | editor explicitly (`q!') if you don't want
 | to overwrite the file - some versions of vi
 | don't handle the `recover' option very well.
 :x [<file>] | Same as ZZ [but write to <file>].
 :x! [<file>] | `:w![<file>]' and `:q'.
 :pre | Preserve the file - the buffer is saved as if
 | the system had just crashed; for emergencies,
 | when a `:w' command has failed and you don't
 | know how to save your work (see `vi -r').
 :f <name> | Set the current filename to <name>.
 :cd [<dir>] | Set the working directory to <dir>
 | (default home directory).
 :cd! [<dir>] | Idem, but don't save changes.
 :e [+<cmd>] <file> | Edit another file without quitting vi - the
 | buffers are not changed (except the undo
 | buffer), so text can be copied from one file to
 | another this way. [Execute the `ex' command
 | <cmd> (default `$') when the new file has been
 | read into the buffer.] <cmd> must contain no
 | <sp> or <ht>. See `vi startup'.
 :e! [+<cmd>] <file> | Idem, without writing the current buffer.
 ^^ | Edit the alternate (normally the previous)
 | file.

 :rew | Rewind the argument list, edit the first file.
 :rew! | Idem, without writing the current buffer.
 :n [+<cmd>] [<files>] | Edit next file or specify a new argument list.
 :n! [+<cmd>] [<files>] | Idem, without writing the current buffer.
 :args | Give the argument list, with the current file
 | between `[' and `]'.

Display Commands

 ^G | Give file name, status, current line number
 | and relative position.
 ^L | Refresh the screen (sometimes `^P' or `^R').
 ^R | Sometimes vi replaces a deleted line by a `@',
 | to be deleted by `^R' (see option `redraw').
 [*]^E | Expose <*> more lines at bottom, cursor
 | stays put (if possible).
 [*]^Y | Expose <*> more lines at top, cursor
 | stays put (if possible).
 [*]^D | Scroll <*> lines downward
 | (default the number of the previous scroll;
 | initialization: half a page).
 [*]^U | Scroll <*> lines upward
 | (default the number of the previous scroll;
 | initialization: half a page).
 [*]^F | <*> pages forward.
 [*]^B | <*> pages backward (in older versions `^B' only
 | works without count).

If in the next commands the field <wi> is present, the windowsize will change to
<wi>. The window will always be displayed at the bottom of the screen.

 [*]z[wi]<cr> | Put line <*> at the top of the window
 | (default the current line).
 [*]z[wi]+ | Put line <*> at the top of the window
 | (default the first line of the next page).
 [*]z[wi]- | Put line <*> at the bottom of the window
 | (default the current line).
 [*]z[wi]. | Put line <*> in the centre of the window
 | (default the current line).

Mapping and Abbreviation
When mapping take a look at the options `to' and `remap' (below).

 :map <string> <seq> | <string> is interpreted as <seq>, e.g.
 | `:map ^C :!cc %^V<cr>' to compile from
 | within vi (vi replaces `%' with the current
 | file name).
 :map | Show all mappings.
 :unmap <string> | Deprive <string> of its mapping. When
 | vi complains about non-mapped macros
 | (whereas no typos have been made), first
 | do something like `:map <string> Z',
 | followed by `:unmap <string>'
 | (`Z' must not be a macro itself), or
 | switch to `ex' mode first with `Q'.
 :map! <string> <seq> | Mapping in append mode, e.g.
 | `:map! 8 b 8gin^V<cr>end;^V<esc>O<ht>'.
 | When <string> is preceded by `^V', no
 | mapping is done.
 :map! | Show all append mode mappings.
 :unmap! <string> | Deprive <string> of its mapping (see `:unmap').
 :ab <string> <seq> | Whenever in append mode <string> is preceded
 | and followed by a breakpoint (e.g. <sp>
 | or `,'), it is interpreted as <seq>,
 | e.g. `:ab p procedure'.
 | A `^V' immediately following <string> inhibits
 | expansion.

 :ab | Show all abbreviations.
 :unab <string> | Do not consider <string> an abbreviation
 | anymore (see `:unmap').
 @<a-z> | Consider the contents of the named register a
 | command, e.g.:
 | o0^D:s/wrong/good/<esc>"zdd
 | Explanation:
 | o - open a new line
 | 0^D - remove indentation
 | :s/wrong/good/ - this input text is an
 | `ex' substitute command
 | <esc> - finish the input
 | "zdd - delete the line just
 | created into register `z'
 | Now you can type `@z' to substitute `wrong'
 | with `good' on the current line.
 @@ | Repeat last register command.

Switch and Shell Commands

 Q | ^ | <intr><intr> | Switch from vi to `ex'.
 : | An `ex' command can be given.
 :vi | Switch from `ex' to vi.
 :sh | Execute a subshell, back to vi by `^D'.
 :[x,y]!<cmd> | Execute a shell <cmd> [on lines x through y;
 | these lines will serve as input for <cmd> and
 | will be replaced by its standard output].
 :[x,y]!! [<args>] | Repeat last shell command [and append <args>].
 :[x,y]!<cmd> ! [<args>] | Use the previous command (the second `!') in a
 | new command.
 [*]!<move><cmd> | The shell executes <cmd>, with as standard
 | input the lines described by <*><move>,
 | next the standard output replaces those lines
 | (think of `cb', `sort', `nroff', etc.).
 [*]!<move>!<args> | Append <args> to the last <cmd> and execute it,
 | using the lines described by the current
 | <*><move>.
 [*]!!<cmd> | Give <*> lines as standard input to the
 | shell <cmd>, next let the standard output
 | replace those lines.
 [*]!!! [<args>] | Use the previous <cmd> [and append
 | <args> to it].
 :x,y w !<cmd> | Let lines x to y be standard input for <cmd>
 | (notice the <sp> between `w' and `!').
 :r!<cmd> | Put the output of <cmd> onto a new line.
 :r <name> | Read the file <name> into the buffer.

vi Startup

 vi [<files>] | Edit the files, start with the first page of
 | the first file.

The editor can be initialized by the shell variable `EXINIT', which looks like:

 EXINIT='<cmd>|<cmd>|...'
 <cmd>: set options
 map ...
 ab ...
 export EXINIT (in the Bourne shell)

However, the list of initializations can also be put into a file. If this file is located in
your home directory, and is named `.exrc' AND the variable `EXINIT' is NOT set, the
list will be executed automatically at startup time. However, vi will always execute
the contents of a `.exrc' in the current directory, if you own the file. Else you have to
give the execute command yourself:

 :source file

or

 :so file

On-line initializations can be given with `vi +<cmd> file', e.g.:

 vi +x file | The cursor will immediately jump to line x
 | (default last line).
 vi +/<string> file | ~ to the first occurrence of <string>.

You can start at a particular tag with:

 vi -t <tag> | Start in the right file in the right place.

Sometimes (e.g. if the system crashed while you were editing) it is possible to
recover files lost in the editor by `vi -r file'. If you just want to view a file by using vi,
and you want to avoid any change, instead of vi you can use the `view' or `vi -R'
command: the option `readonly' will be set automatically (with `:w!' you can override
this option).

The Most Important Options

 ai | autoindent - In append mode after a <cr> the
 | cursor will move directly below the first
 | CHAR on the previous line. However, if the
 | option `lisp' is set, the cursor will align
 | at the first argument to the last open list.
 aw | autowrite - Write at every shell escape.
 | (useful when compiling from within vi)
 dir=<string> | directory - The directory for vi to make
 | temporary files (default `/tmp').
 eb | errorbells - Beeps when you goof
 | (not on every terminal).
 ic | ignorecase - No distinction between upper and
 | lower cases when searching.
 lisp | Redefine the following commands:
 | `(', `)' - move backward (forward) over
 | S-expressions
 | `{', `}' - idem, but don't stop at atoms
 | `[[', `]]' - go to previous (next) line
 | beginning with a `('
 | See option `ai'.
 list | <lf> is shown as `$', <ht> as `^I'.
 magic | If this option is set (default), the chars `.',
 | `[' and `*' have special meanings within
 | search and `ex' substitute commands. To
 | deprive such a char of its special function
 | it must be preceded by a `'. If the option
 | is turned off it's just the other way around.
 | Meta-chars:
 | ^<string> - <string> must begin the line
 | <string>$ - <string> must end the line
 | . - matches any char
 | [a-z] - matches any char in the range
 | [<string>] - matches any char in <string>
 | [^<string>] - matches any char not in <string>
 | <char>* - 0 or more <char>s
 | <<string>> - <string> must be a word
 nu | number - Numbers before the lines.
 para=<string> | paragraphs - Every pair of chars in <string>
 | is considered a paragraph delimiter
 | nroff macro (for `{' and `}'). A <sp>
 | preceded by a `' indicates the previous char
 | is a single letter macro. `:set para=P bp'
 | introduces `.P' and `.bp' as paragraph
 | delimiters. Empty lines and section
 | boundaries are paragraph boundaries too.

 redraw | The screen remains up to date.
 remap | If on (default), macros are repeatedly
 | expanded until they are unchanged.
 | Example: if `o' is mapped to `A', and `A'
 | is mapped to `I', then `o' will map to `I'
 | if `remap' is set, else it will map to `A'.
 report=<*> | Vi reports whenever e.g. a delete
 | or yank command affects <*> or more lines.
 ro | readonly - The file is not to be changed.
 | However, `:w!' will override this option.
 sect=<string> | sections - Gives the section delimiters
 | (for `[[' and `]]'); see option `para'.
 | A `{' beginning a line also starts a section
 | (as in C functions).
 sh=<string> | shell - The program to be used for shell
 | escapes (default `$SHELL'
 | (default `/bin/sh')).
 sw=<*> | shiftwidth - Gives the shiftwidth (default 8
 | positions).
 sm | showmatch - Whenever you append a `)', vi shows
 | its match if it's on the same page; also with
 | `{' and `}'. If there's no match, vi will beep.
 terse | Short error messages.
 to | timeout - If this option is set, append mode
 | mappings will be interpreted only if they're
 | typed fast enough.
 ts=<*> | tabstop - The length of a <ht>; warning: this is
 | only IN the editor, outside of it <ht>s have
 | their normal length (default 8 positions).
 wa | writeany - No checks when writing (dangerous).
 warn | Warn you when you try to quit without writing.
 wi=<*> | window - The default number of lines vi shows.
 wm=<*> | wrapmargin - In append mode vi automatically
 | puts a <lf> whenever there is a <sp> or <ht>
 | within <wm> columns from the right margin.
 ws | wrapscan - When searching, the end is
 | considered `stuck' to the begin of the file.
 |
 :set <option> | Turn <option> on.
 :set no<option> | Turn <option> off.
 :set <option>=<value> | Set <option> to <value>.
 :set | Show all non-default options and their values.
 :set <option>? | Show <option>'s value.
 :set all | Show all options and their values.

Contributors to this Reference
Maarten Litmaath <maart@cs.vu.nl>
Rich Salz <rsalz@bbn.com>
Eamonn McManus <emcmanus@cs.tcd.ie>
Diomidis Spinellis <diomidis%ecrcvax.uucp@pyramid.pyramid.com>
Blair P. Houghton <bph@buengc.bu.edu>
Rusty Haddock <{uunet,att,rutgers}!mimsy.umd.edu!fe2o3!rusty>
Panos Tsirigotis <panos@boulder.colorado.edu>
David J. MacKenzie <djm@wam.umd.edu>
Kevin Carothers <kevin@ttidca.tti.com>
Dan Mercer <mercer@ncrcce.StPaul.NCR.COM>

You can edit/redistribute this document freely, as long as you don't make false
claims on original authorship.

